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Representation of Completely Positive Maps 
Between Partial *-Algebras 

G. O. S. Ekhaguere 1~ 

Received October 5, 1995 

A characterization of the invariant completely positive conjugate-bilinear maps 
from an arbitrary partial *-algebra to a semiassociative, locally convex partial 
*-algebra is given. The result generalizes Stinespring's characterization of 
completely positive maps on C*-algebras, as well as its recent extensions by a 
number of authors. 

1. INTRODUCTION 

We consider the class CP(.~/,~), of completely positive conjugate-bilin- 
ear maps from an arbitrary partial *-algebra ~ to a semiassociative, locally 
convex partial *-algebra ~ .  Our main result is the characterization of the 
subclass ICP(~,~), consisting of the members of CP(,~,~) that are invariant 
in some sense. The result generalizes the well-known Stinespring character- 
ization (Stinespring, 1955) of completely positive maps on C*-algebras, as 
well as its recent extensions by Powers (1974), Lassner and Lassner (1977), 
Paschke (1973), and Ekhaguere and Odiobala (1991), and is formulated in 
terms of locally convex partial *-algebraic modules. These are generalizations 
of inner product modules over B*-algebras (Paschke, 1973) and are introduced 
in Section 2. As the general theory of locally convex partial *-algebraic 
modules is of independent interest, these modules wilt be exclusively studied 
elsewhere. The characterization of the members of ICP(s~, ~) is undertaken 
in Section 3. As a by-product, it is seen there that there is a profuse supply 
of locally convex partial *-algebraic modules, since each member of CP(.~I,~) 
gives rise to such a module. 
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In the rest o f  this section, we outline some of  the fundamental  notions 
employed  in the sequel. 

Let .71 be a partial *-algebra (Antoine et al., 1990, 1991; Antoine and 
Inoue, 1990; Ekhaguere ,  1988, 1993) with involution # and partial multiplica- 
tion o. 

If  x E ~/, we write R(x) [resp. L(x)] for the set o f  right [resp. left] 
multipliers of  x. The set M(x) = L(x) n R(x) consists o f  the universal 
multipliers ofx .  More generally, ifq~ C s~, we shall use the fol lowing notation: 

R(~)  = n R(x) = universal right multipliers o f  
xEqg 

L(~)  = n L(x) = universal left multipliers o f  
x~q~ 

M(qg) = L ( ~ )  n R(~)  = universal multipliers o f  

.~ is called semiassociative iff x, y c M, with y E R(x), implies y o z 
R(x) and x o (y  o z) = (x o y) o z for all z ~ R(~/). Under  these conditions,  

we shall often write x o (y  o z) or (x o y) o z s imply as x o y o z. 
We remark that when  s~ is semiassociative,  then both L(.~) and R(,7/) 

are algebras [but, in general,  not  *-algebras, since L ( ~ )  # = R(s~) and R(s~) # 
= L ( ~ ) ,  where ~# = {x#: x ~ • }, for • C ~ ]  and M ( ~ )  is a *-algebra. 

A member  e o f  ~ / i s  called a unit (and ~ is then said to be unital) iff 
e ~ M(,.~/), e # = e, and x o e = x = e o x, for  all x E .7l. A unit o f  a unital 
partial *-algebra is unique. 

The positive cone of  ~ is the set ,~+ given by 

~+  = {x~ o xl + " ' "  + x,  # ° x,: xl, x~ . . . . .  x,, ~ R ( ~ ) ,  n E N} 

We say that x e ~ is positive if x E ,~+ and write x -> 0. 
Given a Hausdorf f  locally convex topology "r on ~ ,  we call the pair (,~, 

• r) a locally convex partial *-algebra iff  the fo l lowing properties are satisfied: 

• (,~/0, "r) is a Hausdorf f  locally convex space, where .~/o is the underly- 
ing linear space o f  ~ .  

• The map x ~ x # o f  ~ into .~ is ,r-continuous. 
• The map x ~ z o x o f  .~ into ,~ is ,r-continuous for  all z e L ( ~ ) .  
• And/or  the map x ~ x o z o f  ~ into ~ is "r-continuous for all z ~ R(s~). 

2. P A R T I A L  * - A L G E B R A I C  M O D U L E S  

In this section, (9~, "r~) is a locally convex partial *-algebra (with involu- 
tion * and partial multiplication written as juxtaposit ion),  whose  topology 
"ra is generated by a family { I. I,~: ct E A} o f  seminorms,  and D is a linear 
space which is also a right R ( ~ ) - m o d u l e  in the sense that x.a + y.b E D, 
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whenever x, y ~ D and a, b e R(Q), where the action of R(Q) on D is 
written as z.c for z ~ D, c e R(Q). 

Definition 2.1. A Q-valued inner product on D is a conjugate-bilinear 
map (.,.)~: D X D ~ Q such that: 

(i) (x, x)~ ~ Q+, Vx E D, and (x, x)~ = 0 only i f x  = 0. 
(ii) (x, Y)~a = (Y, x)~, Vx, y ~ D. 
(iii) (x, y.b)~ = (x, y )~b ,  Vx, y E D, b ~ R(Q) .  

Notation. If (.,-)~ is a Q-valued inner product on D, define I1" I1=: D 
[0, oo) by 

I lx l l=  = J l(x,x)~l=, x ~ D, ~ E A 

Then, the following inequality holds: 

± (l(x, y)~t + I(y, x)~al,~) < IlxLIlyll~ (*) 2 a - -  

for all x, y E D, a E A. It follows that I I 'L  is a seminorm on D for each 
0~ E m .  

We write "ro,~ for the locally convex topology on D generated by the 
family {II 'L:  ~ ~ A}. 

Remarks. 1. If I. I,~ is *-invariant, i.e., if I a* I ~ = I a l ~, Va ~ Q, a 
A, then the inequality (*) reduces to 

I(x,y)~l,~ ~ Ilxll~llyll~, Vx, y E D, a E A 

2. In addition to properties (i)-(iii) of Definition (2.1), we make the 
following assumption about the action of R(Q) on D: 

(iv) For each b E R(Q), the map 

given by 

IR(b): (D, "ro,~) ~ (D, "ro,~) 

lR(b)x = x.b, x E D 

is continuous. 

Definition 2.2. A triple (D, (.,-)~, "ro.~) for which (i)-(iv) of Definition 
2. I hold will be called a locally convex (Q, r~)-module. 

Remarks. 1. A locally convex (Q, "r~)-module is a generalization of an 
inner product module over a B*-algebra (Paschke, 1973). 

2. If D is already "ro.~-complete, then the triple (D, (.,.)~, "ro,~) will be 
called a complete locally convex (Q, "r~)-module; in case D is not "ro,~- 
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complete, one passes to a complete locally convex (Q, "ra)-module by 
completion. 

Notation. Let (D, ( ' , ' )a ,  To.a) be a locally convex (Q, "rr~)-module and 
(X, "rx.a) the ' roycomple t ion  of  D. The Q-valued inner product ( ' , ' )a  on D 
extends to a Q-valued inner product, denoted again by (.,-)~, on X, and the 
triple (X, ( ' , ' )a ,  "rx.a) is a complete locally convex (Q, "r~)-module. 

We write L(D, X) for the linear space of  all continuous linear maps from 
(D, to.a) to (X, "rx,~). 

Examples. 1. Let (Q, "r~) be a locally convex partial *-algebra whose 
topology is generated by the family { I-I,~: a ~ A} of seminorms. Take D 
-- R(~) ;  define ( ' , ' )a:  D x D --~ ~ by (x, y)~ = x 'y ,  x, y ~ D, and "ro.a 
as the locally convex topology on D generated by the family { I1" I1~: a ~ A } 
given by Ilxll. = ( l (x ,  x)~ I~) ~/2. Then (D, ( ' , ' )2,  "to.a) is a locally convex 
(Q, "ra)-module. 

2. Let 7£ be a pre-Hilbert space with inner product (. , .)x and (~ ,  "ra) 
a locally convex partial *-algebra, as in Example 1 above. Take D as the 
algebraic tensor product D =- R(~ )  ® 7£ and define ( ' , ' )a:  D X D ---> Q by 

( a ® x , b ® y ) a  = ( x , y ) ~ a * b ,  a, b ~ R(~) ,  x, y ~ 7£ 

Letting "ro,a be the locally convex topology on D whose family of  seminorms 
111"11~: a E A] is given by 

Ila ®xll~ -- x/ l (a  ® x ,  a ® x)al~, 

Then the triple (D, (','),a, "to.a) is a locally convex (~ ,  "ra)-module. 

Definition 2.3. Let (D, (.,-)~, "ro.a) be a locally convex (~ ,  "ra)-module 
and (X, "rx.a) the 'ro.~-completion of D. A map T ~ L(D, X) will be called 
a module map iff 

T(x.b) = (Tx).b, Vx e D, b E R ( ~ )  

Notation. 1. We write Lmod(D, X) for the set of  all T ~ L(D, X) to which 
correspond some T*, with domain in X containing D and forming a right 
R(Q)-module, such that 

(Tx, y)~ = (x, T*y)~, Vx, y ~ D 

The map T* will be called an adjoint of T. It is clear that an adjoint of  a 
map in L(D, X) is unique, as D is dense in X. Hence, Lmod(D, X) is a 
*-invariant linear space which is, in general, not an algebra. 

2. The linear space Lmod(D, X) may, however, be given the structure of 
a partial *-algebra by specifying a partial multiplication o and an involution 
+ on it as follows. For T E Lmoa(D, X), define T ÷ by 
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T + =-- T*Io 

Then with F C Lmod(D, X) given by 

I" = {(Tb Tz) • (Lmod(D, X))z: 

TzD C_ domain of Ti ~* and T-~D C_ domain of T*} 

we define Ti o Tz by 

rl o 7"2 =_- T-~*T2 

whenever (Ti, T~) • F. We work with the partial *-algebra (Lmod(D, X), +, 
o) in the sequel and often denote it simply by L+od(D, X). 

Proposition 2.4. Every member of + L~od(D, X) is a module map. 

Definition 2.5. A module *-representation of a partial *-algebra s~ (with 
involution ~ and partial multiplication .) is a map "rr from ~/ into some 

+ 
Lmoe(D, X') such that the following hold on D: 

(i) 7r(Xla + h2b) = hlrr(a) + h2~r(b), Vh, ,  h2 • C, a, b e s~. 
(ii) w(a #) = "rr(a) +, Va • M. 
(iii) If A • L(b), then ~-(a) • L(~r(b)) and 

"rr(a "b) = "rr(a) o 'rr(b) 

Remark. Since 'rr(a) is in + Lmod(D, X) for each a • ,~, it follows from 
Proposition 2.4 that rr(a)(x.b) = (Tr(a)x).b for all a • ~ ,  b e R(~).  

3. C O M P L E T E  POSITIVITY 

Let s¢ be a partial *-algebra, (~ ,  "r~) a semiassociative locally convex 
partial *-algebra (with involution * and partial multiplication written as 
juxtaposition), whose topology "ra is generated by a family { I. I,~: ot • A } 
of seminorms, and Bil(~,  ~ )  the set of all maps q~: s~ × ~ --~ ~ with 
the properties 

(i) tp(x, hly  + ~k2Z) = hlq~(X, y) + k2q~(x, z) 
(ii) qo(x, y)* = q~(y, x) 

for all x, y, z e o¢, hz, h2 • C. The members of Bil(M, ~ )  are therefore 
conjugate-bilinear maps. 

Notation. In the sequel, the map ((-,.)): R(~)  x ~ ---> ~ is defined by 

((a, b)) = a 'b,  a e R(~) ,  b e 
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Remark. Let n be a positive integer. A member of  Bil(,~/, ~ )  is called 
n-positive iff 

((bj, ¢p(aj, a~)bk>) = ~ bTcp(a j, ak)bk) >--- 0 
j , k  = 1 j , k  = 1 

Val, a2 . . . . .  an ~ ~ ,  bl, b2 . . . . .  bn E R(~) 

The completely positive maps from ~ × ~/ to ~ form a subset of Bil(~,  
~ )  and are defined as follows. 

Definition 3.1. ¢p ~ Bil(,~, ~ )  is called completely positive if ¢p is n- 
positive for each n. 

Notation. Denote the set of all completely positive members of Bil(~,  
~ )  by CP(~, ~) .  

Remark. 1. Every q~ ~ CP(~, ~ )  is automatically positive in the sense 
that q0(x, x) -> 0 Vx ~ ~/. 

2. If (D, (','>~, "ro.~) is a locally convex (~ ,  "r~)-module, (X, "rx.~) the 
completion of (D, "ro.~), "rr a module *-representation of ~ in L+mod(D, X), 
and x0 some fixed member of D, then the map ¢p: ~ × s~ ~ ~ defined by 

¢p(a, b) = (mr(a)xo, mr(b)xo>~, a, b ~ ~ (*) 

is completely positive. It is not known, without any restriction on ~ ,  if every 
q~ ~ CP(~, ~ )  is always of  the form (*). We shall characterize a subset of  
CP(sg, ~ )  whose members have representations of the form (*). 

3. Form the algebraic tensor product ~ ® ~ .  This is a right R(~)-  
module if we define the module action by 

(a ~ b).c = a ~ (bc) 

Va ~ s~, b ~ ~ ,  and c ~ R(~). 

Proposition 3.2. To each q~ e CP(,7/, ~ )  there corresponds a locally 
convex (~ ,  'r~)-module. 

Proof Let go e CP(s~, ~).  Define 

<.,%,~: (~ ® ~)  x (~ ® ~)  -e 

by 

for a, . . . . .  an, ct, . . . . .  ct,~ in ~/ and b, . . . . .  bn, 131 . . . . .  13,,, in ~ .  Then, 
(.,.>,.~ is a Q-valued inner product on ~ ® ~ .  Let N,p = {x ~ ~ ® ~ :  
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(x, x)~,~ = 0}. One checks that N~ is a right R(~)-submodule of s~ ® ~ .  
Denote ( ~  ® ~) \N~ by X ° and let h~(x) be the coset of X ° containing x e 

® ~ .  A ff~-valued inner product, denoted again by (',')~.~, is induced in 
a natural way by (',.)~,~ on X~. This is a locally convex space whose topology 
"rxOa is generated by the family {ll'llo,d a e ~x} of seminorms defined by 

Ilxll~,~ = , / l { x ,  x>~,~l~, x E X ° 

One checks that Ilxll~.~ = Ib*(x, x)~.~bl= for x e X ° and b e R(~).  So, as 
(~ ,  r~) is a locally convex partial *-algebra, it follows that the right module 
action of R(~)  on X ° is continuous. Hence, the triple (X °, (-, ')a, " r ~ )  is a 
locally convex (~ ,  r~)-module. This concludes the proof. • 

Remark. We write (X~, "rx~.~) for the 'rxo~-completion of X ° 

Definition 3.3. A member ¢p of CP(~, ~ )  will be called invariant if the 
following three properties hold: 

(i) The linear span of h~(R(~) ® ~ )  is dense in X~. 
(ii) tp(a o b, c) = q0(b, a # o c), Va ~ ~ ,  b, c E R(~).  
(iii) q~(a # o b, c o d)  = q~(b, (a o c) o d) Vb, d u R(,~) and a, c E 

with a ~ L(c). 

Notation. Write ICP(~, ~)  for the set 
CP(~t, ~).  

Remark 3.4. 1. The following fact will be employed later. 

Let q0 E ICP(~, ~)  and ~ = E]=t ai ® bj be a member of N~, with a i 
R(~)  and b i e ~ , j  = l, 2 . . . . .  n. Then, for any a e ~ ,  ~Ja = ET=~ a o 

a./® b/also lies in Ncp. 

This is seen as follows. Let c k e  R(~),  dk E ~ ,  k = l, 2 . . . . .  m, and 
• l = Ek%t c~ ® d~. Then, a simple calculation shows that 

(xA-n). x4~))~,~ = (xA'q~,), xA~))~,~ = 0 

and as the linear span of h~(~ ® ~ )  is dense in X~, it follows that h~(~) 
= 0, implying ~a ~ Nip" 

2. Our maifi result is the following. 

Theorem 3.5. Let (~ ,  ~, o) be a unital partial *-algebra with unit ea; (~ ,  
"ra) a unital semiassociative, locally convex partial *-algebra with unit ea, 
involution *, and partial multiplication written as juxtaposition; and tp a 
member of ICp(~l, ~). Then, there are a locally convex (if3, %z)-module (D~, 
(',').~, "ro~), a module *-representation "rr,~ of (,~/, #, o) in L+~o~(D~, X,~), where 
X~ is the 'ro~.a-completion of D~, and a linear map V~ from ~ into D~ such that 

((b~, ¢p(x, y)b2)) = (~r~(x)V~b,, 7r~(y)V~b~)~.~ (**) 

of all invariant members of 
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for all x, y E N and bl, b2 ~ R(~),  and the linear span of 7r~(R(.~))V+~ is 
dense in X+. 

Remark. Denote V+e~ by ~+. Observe that if bl = e~ = b2, then (**) 
reduces to the following: 

tp(x, y) = (~r+(x)~,p, 7r+(y)~+)+.~ 

for all x, y E ~ .  

Proof Let ¢p ~ ICP(~, ~).  Take h+, N+, (',-)~.~, and X, as in Proposition 
3.2. Define D+ as the linear span of h+(R(~/) ® ~ )  and "ro+.m as the locally 
convex topology on D+ generated by the family {11"11o.o+: a E A} of semi- 
norms given by 

Ilxll=.o+ = ,/l(x, x)+~l~, x E O,p 

Then the triple (D~, (',')~s, "ro,~) is a locally convex (~ ,  "ro~s)-module. By 
Definition 3.3, Property (i), D+ is dense in 3(+. 

For each a ~ ,7/, define "rr,p(a) on D+ by 

¢r+(a)X+(~) = X+(~o) 

with ~ = ~'=, aj ® bj, ~ = ~=1 a o aj ® bj-, at . . . . .  a,  e R(~),  b~ . . . . .  
b, ~ R(~).  As ~a E N~ whenever ~ ~ N~ (by Remark 3.4), it follows that 
-rr+(a) is well defined for each a E ~ .  On D+, one checks that: 

• "tr,p(hlat + h2a2) = ht'rr,p(a0 + hz~p(a2) for all al, az ~ ~ ,  h~, h2 
~ C .  

• "n',p(a) + = "nLp(a#), Va ~ ~ .  
• "rr+(a) acts linearly for each a ~ ~ .  

It follows that "rr,p(a), a ~ ~ ,  extends to a linear map, denoted again 
by -%(a), lying in L+~o~(D+, X+). Hence, by Proposition 2.4, ,rr+(a) is a module 
map for each a ~ ~ .  Next, suppose a, b E ~ /w i t h  a ~ L(b) and ~, x I 
R(.~/) ® 9~. Then, using the invariance of q0, one finds 

(Tr~(a#)X+(~), "%(b)h~p(rl))~.~ = (X,p(~), "rr,p(a o b)X+(Xl)),p..~ 

It follows that -%(a) ~ L(ar+(b)) whenever a, b E ,~ with a ~ L(..~/), showing 
that rr+ is a representation of ~ in + Lmod(D,p, X,p). As it has been seen above 
that "% is a *-map, this shows that -rr+ is a module *-representation of .~ in 
L,~o~CD+, X,+). 

Define V,p: ~ ---> D,p by 

V~b = X~(ea ® b) 

for b m R(~).  Then, V~ is linear on ~ .  The linear span of "%(R(~))V+~ is 
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precisely the linear span of  X~(R(M) ® ~ ) ,  which is D~, and is therefore 
dense in X,p. Furthermore, for bl, b2 E R(~ )  and x, y ~ ~ ,  we have 

(~r,(x)V,b,, ~r~(y)V, b2)~.~ = (h,(x  ® bO, h~(y ® B2)),,~ 

= b~q~(x, y)bz 

= ((b,, tp(x, y)b2)} 

as claimed. This concludes the proof. • 

Remark. Theorem 3.5 generalizes the well-known Stinespring character- 
ization (Stinespring, 1955) of completely positive maps on C*-algebras, as 
well as its recent extensions by Powers (1974), Lassner and Lassner (1977), 
Paschke (1973), and Ekhaguere and Odiobala ( 1991). 
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